Problem 1.24

Show that a necessary and sufficient condition that $M(x, y)+N(x, y) d y / d x=0$ be exact is $\partial M / \partial y=\partial N / \partial x$.

Solution

What we have to show is that $M(x, y)+N(x, y) d y / d x=0$ is exact implies $\partial M / \partial y=\partial N / \partial x$ and vice-versa. That is, there are two parts to this proof:

Part I : $\quad M(x, y)+N(x, y) \frac{d y}{d x}=0$ is exact $\quad \Rightarrow \quad \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
Part II : $\quad \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \quad \Rightarrow \quad M(x, y)+N(x, y) \frac{d y}{d x}=0$ is exact.

Part I

The fact that $M(x, y)+N(x, y) d y / d x=0$ is exact means there exists a potential function $\phi=\phi(x, y)$ such that

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M(x, y) \tag{1}\\
& \frac{\partial \phi}{\partial y}=N(x, y) \tag{2}
\end{align*}
$$

Differentiate both sides of equation (1) partially with respect to y and differentiate both sides of equation (2) partially with respect to x.

$$
\begin{aligned}
\frac{\partial^{2} \phi}{\partial y \partial x} & =\frac{\partial M}{\partial y} \\
\frac{\partial^{2} \phi}{\partial x \partial y} & =\frac{\partial N}{\partial x} .
\end{aligned}
$$

According to Clairaut's theorem,

$$
\frac{\partial^{2} \phi}{\partial y \partial x}=\frac{\partial^{2} \phi}{\partial x \partial y},
$$

provided that these second derivatives are continuous. Therefore,

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} .
$$

Part II

Starting with the premise,

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \tag{3}
\end{equation*}
$$

our aim here is to show that there exists a potential function $\phi=\phi(x, y)$ such that

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M(x, y) \tag{1}\\
& \frac{\partial \phi}{\partial y}=N(x, y) . \tag{2}
\end{align*}
$$

We will use these two equations to find this function. Integrate both sides of equation (1) partially with respect to x.

$$
\begin{equation*}
\phi(x, y)=\int^{x} M(s, y) d s+f(y) \tag{4}
\end{equation*}
$$

where f is an arbitrary function of y. In order to determine f, differentiate both sides of this result partially with respect to y.

$$
\frac{\partial \phi}{\partial y}=\frac{\partial}{\partial y} \int^{x} M(s, y) d s+\frac{d f}{d y}
$$

According to equation (2), we have

$$
N(x, y)=\frac{\partial}{\partial y} \int^{x} M(s, y) d s+\frac{d f}{d y} .
$$

Solve this equation for $d f / d y$.

$$
\begin{equation*}
\frac{d f}{d y}=N(x, y)-\frac{\partial}{\partial y} \int^{x} M(s, y) d s \tag{5}
\end{equation*}
$$

We can solve this for f by integrating both sides with respect to y. Before we do that, though, we have to show that the right side is a function of y only, as we have a total derivative with respect to y on the left side. This can be done by differentiating the right side partially with respect to x and showing that it is equal to 0 .

$$
\begin{aligned}
\frac{\partial}{\partial x}\left[N(x, y)-\frac{\partial}{\partial y} \int^{x} M(s, y) d s\right] & =\frac{\partial N}{\partial x}-\frac{\partial^{2}}{\partial x \partial y} \int^{x} M(s, y) d s \\
& =\frac{\partial N}{\partial x}-\frac{\partial^{2}}{\partial y \partial x} \int^{x} M(s, y) d s \\
& =\frac{\partial N}{\partial x}-\frac{\partial}{\partial y} \frac{\partial}{\partial x} \int^{x} M(s, y) d s \\
& =\frac{\partial N}{\partial x}-\frac{\partial}{\partial y} M(x, y) \\
& =\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y} \\
& =\frac{\partial N}{\partial x}-\frac{\partial N}{\partial x} \\
& =0
\end{aligned}
$$

where equation (3) was used to change $\partial M / \partial y$ to $\partial N / \partial x$. Now we can integrate both sides of equation (5) with respect to y.

$$
f(y)=\int^{y} N(x, r) d r+\int^{y} \frac{\partial}{\partial r} \int^{x} M(s, r) d s d r+C,
$$

where C is an arbitrary constant. Plugging this result into equation (4), we thus have a potential function that satisfies equations (1) and (2), which means $M(x, y)+N(x, y) d y / d x=0$ is exact.

$$
\phi(x, y)=\int^{x} M(s, y) d s+\int^{y} N(x, r) d r+\int^{y} \frac{\partial}{\partial r} \int^{x} M(s, r) d s d r+C
$$

The two parts of the proof are complete. Therefore, a necessary and sufficient condition that $M(x, y)+N(x, y) d y / d x=0$ be exact is $\partial M / \partial y=\partial N / \partial x$.

